Persamaan Gelombang

Gelombang adalah suatu gangguan dari keadaan setimbang yang bergerak dari satu tempat ke tempat lain (Young & Freedman, 1996:593). Sistem gelombang mempunyai fungsi gelombang yang menggambarkan perpindahan satu partikel dalam medium. Fungsi tersebut tergantung pada posisi dan waktu (dimensi ruang dan waktu ), sehingga secara umum fungsi gelombang dapat dinyatakan dengan . Pada gelombang satu dimensi, dimana gelombang merambat dalam arah  dan bergerak dengan kecepatan konstan sebesar , fungsi gelombang dapat dinyatakan sebagai
.                                                                                     (1)
Fungsi gelombang pada persamaan (1) dapat dinyatakan sebagai  dan . Dengan menggunakan aturan berantai, maka akan diperoleh persamaan diferensial gelombang satu dimensi, yaitu
                                                                                            (2)
(Alonso & Finn, 1980:678).     
            Persamaan (2) menggambarkan perambatan gelombang dengan kecepatan  dalam ruang satu dimensi. Pada gelombang elektromagnetik nilai  menyatakan komponen E dan H, pada tali yang digetarkan nilai  menyatakan perpindahan dari keadaan setimbang, dan pada kelistrikan nilai  menyatakan arus atau beda potensial (Boas, 1983:542).

Persamaan Gelombang Model Fermi, Pasta, Ulam
Fermi, Pasta dan Ulam dalam paper mereka di tahun 1955 menyelidiki model gelombang nonlinier dari sebuah tali, dimana tali direntangkan sepanjang sumbu x dan tali hanya bisa bergerak dalam arah sumbu y.  Pemodelan tersebut disebut model Fermi, Pasta, Ulam (FPU) (Rucker, 1998
Pada model FPU tali dimodelkan oleh sederet partikel sepanjang sumbu x, dengan setiap koordinat x dipisahkan oleh jarak , sehingga massa dari setiap partikel adalah  dimana   adalah rapat massa tali. Sedangkan pergerakan tiap partikel dalam arah sumbu y dimodelkan oleh akibat dari hubungan pegas tiap partikel dengan dua tetangganya.
Bila   menyatakan perpindahan vertikal (nilai y) pada waktu  dari partikel yang berada pada posisi horisontal , dan  menyatakan perbedaan perpindahan vertikal antara dua partikel tetangga, maka jarak antara dua partikel tetangga  dapat dinyatakan sebagai . Besarnya gaya oleh sebagian besar pegas biasanya dinyatakan sebagai fungsi G dari jarak (dibagi dengan  sehingga gaya ternormalisasi), yaitu
.                                                                                          (3)
Selama diasumsikan bahwa partikel tidak bergerak dalam arah sumbu x, maka hanya memperhatikan komponen vertikal dari gaya pegas. Harga mutlak dari gaya komponen vertikal dapat dinyatakan . Bila dinyatakan secara tepat sebagai fungsi , maka diperoleh
            .                                                         (4)
            Jika pegas linier (mengikuti hukum Hooke) dan memiliki panjang keseimbangan , maka  dimana k adalah harga positif dari konstanta pegas dan . Untuk pegas nonlinier dimana  merupakan fungsi analitik mendekati ,  dapat dinyatakan sebagai deret pangkat dari   dimana  sangat kecil, sehingga  dinyatakan sebagai
             .                             (5)
            Untuk partikel yang berada  pada  dapat didefinisikan bahwa  dan  sehingga dengan menggunakan hukum Newton, persamaan (8) menjadi
            .         (6)
Pada persamaan (6), untuk  mendekati 0 dapat dihasilkan persamaan diferensial gelombang nonlinier model FPU
            ,                                   (7)
dengan  adalah turunan kedua  terhadap waktu ,  adalah turunan pertama  terhadap posisi  dan adalah turunan kedua  terhadap posisi.
            Pada permasalahan khusus yaitu jika pegas mengikuti hukum Hooke dan panjang keseimbangan 0, maka bagian nonlinier pada persamaan (7) hilang dan diperoleh bentuk umum persamaan gelombang linier
                                                                                               (8)
dimana  (konstanta pegas). Sedangkan jika  kecil maka pengaruh bagian pangkat tertinggi dapat diabaikan, sehingga diperoleh persamaan (9) yang merupakan persamaan gelombang nonlinier kuadratik model FPU.
                                                                                           (9)
Dan jika gaya pegas tepat sebagai fungsi jarak sehingga , maka diperoleh persamaan (10) yang merupakan persamaan gelombang nonlinier kubik model FPU.
                                                                                        (10)
Persamaan Laplace
Fungsi potensial V(r) diperoleh melalui penurunan persamaan diferensial parsial sebagai berikut:
……………………………………………………….(1)
Gould dan Tobochnik(1996: 310-320) menyatakan bahwa untuk menyelesaikan persamaan Laplace digunakan metode relaksasi. Metode ini menghitung nilai potensial V(r) setiap titik daerah melalui rata-rata potensial 4 titik tetangga terdekat yang secara tidak langsung sebanding dengan potensial dirinya sendiri.
 ……….(2)     
  ….....(3)    
……..……...(4)    

Persamaan (4) dapat diperoleh dari pendekatan ekspansi deret Taylor orde 2. Bukti penurunan rumus terhadap 4 tetangga terdekat dapat dilihat di lampiran1.
Untuk tinjauan terhadap 8 tetangga terdekat nilai potensial V(r) didapat dengan:
Dalam program solusi persamaan Laplace ini menggunakan tinjauan terhadap delapan tetangga terdekat untuk mencari nilai potensial V(r). Bukti penurunan rumus untuk delapan tetangga terdekat dapat dilihat pada lampiran 2.


Transformasi  Laplace

Metode transformasi Laplace adalah suatu metoda operasional, yang dapat digunakan secara mudah untuk menyelesaikan “Persamaan Deferential Linear” Maka dengan mengunakan Transformasi Laplace kita dapat mengubah beberapa fungsi umum :

1.      Fungsi sinusoidal
2.      Fungsi sinusoidal teredam
3.      Fungsi Exponensial menjadi aljabar variable kompleks

Sedangkan untuk operasi-operasi seperti deferential dan integral dapat diganti dengan, operasi aljabar bidang komplek dan selanjutnya dapat diselesaikan dengan menggunakan table transformasi Laplace
Defenisi transformasi Laplace :

 

f(t)  =   fungsi waktu, adalah nol (0) untuk  t< 0
F(s) =  fungsi komplek (TL dari   f(t)
L     =  simbul operasional yang menunjukkan bahwa besaran yang dikehendakinya
          ditransformasikan dengan integral laplace.

Keuntungannya menggunakan Transformasi Laplace:

1.      Kondisi awal akan tercakup secara otomatis mis:

 
Pada saat  t = 0, lihat rangkaian listrik tersebut disini capasitor sudah dianggap bermuatan hal, semacam ini disebut kondisi awal.
2.      Dapat menyelesaikan persamaan aljabar biasa
3.      Lebih sistematis
4.      Sudah tersedianya table
5.      Semua macam input mudah untuk diselesaikan

Dalil- dalil Transformasi Laplace

1. Dalil Lenearity :
               
                f(t)                    F(s)
                                                                                                             
                af(t)                  a F(s)

2. Dalil Superposisi :
            f1(t)                                  F1(s)                                     
                                                                         f1(t)   ±   f2(t)     =   F1(s) ± F2(s)
           f2(t)                                   F2(s)                                L [f1(t)   ±   f2(t)  ]   =   F1(s) ± F2(s)

3. Deferensiasi :

    Kondisi awal dimana harga f(0), harga awal f(t)
                                                              pada saat t = 0



4.      Dalil  Integrasi










TABEL ANALOGI BESARAN SEKIAS DARI MEKANIS              LISTRIK

No
Sistem Mekanis
Sistem Listrik
Model Sistem
Simbol
Analogi Gaya ke Arus
Analogi Gaya ke Teganga
1
Gaya ( P ), ( F )
Torsi ( T )
I ( t )
V (t)
2
Kecepatan ( X )
Kecepatan sudut ( θ )

V (t )
I (t )
3
Massa ( M ) atau Momen Inersia ( J )
C
L
4
Koefisien Gesek viskos
 ( f/D)
R
5
Konstanta Pegas ( k )
6
Perpindahan (x)
Perpindahan (θ )
Ψ
q


Contoh :

 


                                                           









Jika dibawa ke rangkaian listrik :







                                                             










                                                                                   





Soal : Sebagaimana diperlihatkan pada gambara rangkain mekanis sebagai berikut :




a. Carilah/tuliskan persamaan gerak dar Sistem.
b.  Tentukan bentuk transfer fuction  G(s) adalah
                                        Merupakan fungsi dari output/input                            .
                       
                                   
                                               


Penyelesaian :


silahkan meninggalkan komentar yang membangun.
terima kasih atas kunjungannya
EmoticonEmoticon